Stray buffaloes

Group & Spatio-temporal Characteristics Greater Kruger National Park & surrounds, 1998-2008

Background

- 40000-45000 African buffaloes (Syncerus caffer) in GLTP
- Buffaloes endemic host of FMD in Southern Africa
 - Makes eradication virtually impossible
- Up to 60% of KNP buffaloes harbour one/more SAT type FMD virus
- 85% of buffaloes >1 year exposed to all SAT FMD types
- Infection postulated to happen when calves lose maternal immunity
 - Synchronous calving species i.e. concurrent susceptibility
 - Calf "epidemics"
- Calves & possibly sub-adults considered highest risk

Background

- Control mainly based on separation of buffaloes & cattle
 - Fencing
 - Type, ownership & maintenance varies along boundary
 - Vulnerable to damage by
 - People
 - Elephants
 - Flooding
 - Buffaloes generally "respect" fences
 - Vaccination
 - Efficacy recently called into question
- Exact mechanism for transmission from buffaloes to cattle remains speculative

Source data

- 11 years: 1998-2008
- Official reports
 - Provincial & National Veterinary Services
 - Provincial Environmental Departments
- Spatial reports
 - Official reports (some)
 - Workshops with officials involved in control of stray buffaloes
 - Participatory mapping utilising high resolution imagery & fine scale data
- Duplicates removed
- Non-exhaustive

Main results

- Events: 645
 - 315 with adequate spatial info
- Animals: 3124
- 38.5% of events recorded in 2000/2001 "flood years"
- No significant seasonal pattern
 - Both number of events &/ number of animals

Temporal pattern

Group size

- Median: 1 [IQR: 1 2]
- Single animal: 46.5% of events
- >5 animals: 10% of events
- Only 7 events larger >50 animals
 - 3 of which during "flood years"
 - Max: 285
- Groups outside Park significantly smaller than census groups

Group	Stray	KNP census
Males ("Bachelor")	1 [IQR: 1 – 2]	3 [IQR: 2 – 6]
Mixed ("Family")	2 [IQR: 1 – 3]	130 [IQR: 44 – 292]

Group composition

- 55.3% of groups adult bulls only ("Bachelor groups")
 - 77.9% if which were single animals
- Young animals "underrepresented"
 - Sub-adults: only 9.5% of events
 - Calves: only 3% of events

Group	Stray	KNP census
Sub-adult	7.3%	~32%
Calf	2.3%	~15%

Group composition

Spatial pattern

- 12.7% if events recorded beyond vaccinated area of protection zone
 - 32% of which during "flood years"
 - 38.2% of which bull groups

Spatio-temporal pattern

Control/Resolution of events

- Destruction
 - 76.6% of events
 - Group size: 1 [IQR: 1 2]
- Chased back to Park
 - 6.2% of events
 - Group size: 10 [4-30]
- Translocation
 - 2.2% of events
 - Group size: 3 [1 4]
 - Distance from fence: 9.9km [IQR: 5.0 19.6km]
- Returned self
 - 5.1% of events
- Some not found
 - 8.8% of events

Discussion

- Impact of extreme events eg flooding
- Generally small groups
 - mainly adult males
 - Young animals underrepresented
 - Low risk profile?
- Generally found very close to fence
- Period when animals moves shortest distance from fence coincides with period of perceived highest infectivity
- Very few manage to move through vaccination zone
- Resolution aimed at controlling <u>all</u> animals in group
 - Role of "acute stress" in shedding virus?

Potential bias?

- Recollection bias
- Reporting bias
 - Proximity to people
 - cattle herding distances vs reported distances from urban areas
 - Incentive for reporting stray animals
- Spatial data
 - Difficult to measure accuracy
 - Experienced officers with good orientation & landscape knowledge
- Non-exhaustive
 - Lost data (eg diaries)
 - Poor reporting

Conclusion

- Considering number of animals managing to escape from the Park & relatively "low" number of outbreaks
- Need for integrated/centralised data collection system on these events
 - preferably in conjunction with fence monitoring systems

Algorithm

Thank you

BelSPO

University of Pretoria

Institute of Tropical Medicine, Antwerp, Belgium

Spatial Ecology & Epidemiology Group, University of Oxford

Peace Parks Foundation

Directorate Animal Health, Department of Agriculture, Forestry & Fisheries, South Africa

Mpumalanga Veterinary Services

Mpumalanga Tourism & Parks Agency

Limpopo Veterinary Services

Limpopo Department of Economic Development, Environment & Rural Development

